Role of microtubules in the organization and localization of the Golgi apparatus
نویسندگان
چکیده
Normal interphase PtK2 and A549 cells display long microtubules radiating from the microtubule-organizing center (MTOC) to the plasma membrane. Both MTOC and Golgi apparatus are contained in the same perinuclear area. Treatment of cells with 1 microM colcemid for 2 h results in microtubule depolymerization and fragmentation of the Golgi apparatus into elements scattered throughout the cytoplasm. Both normal microtubules and the Golgi apparatus assemble again following removal of colcemid. Injection of the alpha, beta-nonhydrolyzable GTP analog, guanosine 5'(alpha, beta-methylene)diphosphate [pp(CH2)pG], into interphase cells growing in normal medium results in the formation of microtubule bundles resistant to colcemid and prevents the fragmentation of the Golgi apparatus. Injection of pp(CH2)pG into cells incubated with colcemid results in substitution of tubulin ribbons for microtubules and has no effect on the Golgi-derived elements scattered throughout the cytoplasm. Removal of colcemid 1 h after the injection of pp(CH2)pG results in polymerization of large numbers of short, single randomly oriented microtubules, whereas the Golgi apparatus remains fragmented. Treatment of cells with 10 microM taxol for 3 h results both in polymerization of microtubule bundles without relation to the MTOC in the cell periphery and fragmentation of the Golgi apparatus. The Golgi-derived fragments are present exclusively in regions of the peripheral cytoplasm enriched in microtubules. The codistribution of microtubules and Golgi elements can be reversed in taxol-treated cells by injection of a monoclonal (YL 1/2) antibody reacting specifically with the tyrosylated form of alpha-tubulin. Cells incubated with colcemid after treatment with taxol have large numbers of Golgi-derived elements in close association with colcemid-resistant microtubule bundles. Incubation of cells with 50 microM vinblastine for 90 min results in microtubule dissembly, formation of tubulin paracrystals, and fragmentation of the Golgi apparatus into elements without relation to the tubulin paracrystals.
منابع مشابه
Dynein supports motility of endoplasmic reticulum in the fungus Ustilago maydis.
The endoplasmic reticulum (ER) of most vertebrate cells is spread out by kinesin-dependent transport along microtubules, whereas studies in Saccharomyces cerevisiae indicated that motility of fungal ER is an actin-based process. However, microtubules are of minor importance for organelle transport in yeast, but they are crucial for intracellular transport within numerous other fungi. Herein, we...
متن کاملDynein Supports Motility of Endoplasmic Reticulum in the Fungus Ustilago maydis□V
The endoplasmic reticulum (ER) of most vertebrate cells is spread out by kinesin-dependent transport along microtubules, whereas studies in Saccharomyces cerevisiae indicated that motility of fungal ER is an actin-based process. However, microtubules are of minor importance for organelle transport in yeast, but they are crucial for intracellular transport within numerous other fungi. Herein, we...
متن کاملMinus end-directed kinesin-14 KIFC1 regulates the positioning and architecture of the Golgi apparatus
The Golgi apparatus is the central organelle along the eukaryotic secretory and endocytic pathway. In non-polarized mammalian cells, the Golgi complex is usually located proximal to the nucleus at the cell center and is closely associated with the microtubule organizing center. Microtubule networks are essential in the organization and central localization of the Golgi apparatus, but the molecu...
متن کاملThe Golgi Apparatus Remains Associated Organizing Centers during Myogenesis with Microtubule
In vitro myogenesis involves a dramatic reorganization of the microtubular network, characterized principally by the relocalization of microtubule nucleating sites at the surface of the nuclei in myotubes, in marked contrast with the classical pericentriolar localization observed in myoblasts (Tassin, A. M., B. Maro, and M. Bornens, 1985, J. Cell Biol., 100:3546). Since a spatial relationship b...
متن کاملA newly identified myomegalin isoform functions in Golgi microtubule organization and ER-Golgi transport.
The Golgi of mammalian cells is known to be a major microtubule-organizing site that requires microtubules for its organization and protein trafficking. However, the mechanisms underlying the microtubule organization of the Golgi remain obscure. We used immunoprecipitation coupled with mass spectrometry to identify a widely expressed isoform of the poorly characterized muscle protein myomegalin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 99 شماره
صفحات -
تاریخ انتشار 1984